Str Class | Sse String | H | E | Topology String | Paired Contacts | Is Preferred |
---|---|---|---|---|---|---|

AB | EEEEHHHEEEEEEEEE | 3 | 13 | Topology | 22 | ✘ |

AB | EEEEHHHEEEEEEEEE | 3 | 13 | Topology | 21 | ✘ |

AB | EEEEHHHEEEEEEEEE | 3 | 13 | Topology | 22 | ✘ |

AB | EEEEHHHEEEEEEEEE | 3 | 13 | Topology | 22 | ✘ |

AB | EEEEEHEEHEEHHEHEEEEEEE | 5 | 17 | Topology | 35 | ✘ |

AB | EEHEEEHEHHEHEHEHHHEHEEEHEEEEEEEEEE | 11 | 23 | Topology | 76 | ✘ |

AB | EEEEHHEEEHHHHEHEHEEHEEHEEHEEEEHHEEHEHEHHEH | 18 | 24 | Topology | 87 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 16 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 8 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 10 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 11 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 10 | ✔ |

AB | EEEHEEH | 2 | 5 | Topology | 10 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 8 | ✘ |

AB | EEEHEEH | 2 | 5 | Topology | 10 | ✘ |

AB | EEEHEHHHEEHEEHEEEEEEEHEEEEEEH | 8 | 21 | Topology | 48 | ✘ |

AB | EHEEEHEHHHEEHEHHHHEEHEE | 11 | 12 | Topology | 55 | ✘ |

AB | EHEEEHEHHHEEHEHHHHEEHEE | 11 | 12 | Topology | 57 | ✘ |

AB | EEEHEEE | 1 | 6 | Topology | 8 | ✘ |

AB | EEEHEEE | 1 | 6 | Topology | 6 | ✔ |

- Page 1 of 1692
- Next

Above table lists all the available topologies in the ProLego database. Each topology (row in the table), refers to a possible contact combination of secondary structure elements (SSEs). The table column headers can be read as following,

**topClass:**Structure Class [A: All alpha; B: all Beta, AB: alpha beta Mix]**Helix (H):**Number of helices in structure.**Strands (E):**Number of beta-strands in structure.**SSE string:**SSE string represents the occurences of Heleix(H) and Beta-Strands(E) in sequce from N to C terminal.**Paired Contact:**Number of pair-wise contact in a topology [varies from 1 to n*(n-1)/2 ; where n is number of secondary structures (H and E)]**Topology String:**The link for vizualising and detail information on a particular topology**Is Preferred:**Prefernce of a Topology in the group of SSE**topoGrp statSig:**Statistical significance of a topology class